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ABSTRACT 

It is shown that many classical and many new combinatorial geometric 
results about finite sets of points in R d, specially the theorems of Tver- 
berg type, can be generalized to the case of vector bundles, where they 
become combinatorial geometric statements about finite families of con- 
tinuous cross-sections. The well known Tverberg-Vredica conjecture is 
interpreted as a result of this type and its partial solution is obtained with 
the aid of the parametrized, ideal-valued, cohomological index theory. In 
the same spirit, classical "nonembeddability" and "coincidence" results 
like ~3,3 ~ R2 have higher dimensional artalogues. A new ingredient is 
that the coincidence condition is often interpreted as the existence of a 
common afl]ne k-dimensional transversal, which reduces to the classical 
case for k = 0. 

1. I n t r o d u c t i o n  

One of the objectives of this paper is to demons t ra te  tha t  the euclidean space 

R 4, the usual ambient  space for objects  studied by combinator ia l  geometry, can 

be replaced by a vector bundle  R d --+ E ~ B which is viewed as a family of d- 

d imensional  vector spaces parametr ized by a base space B. This  is demons t ra ted  

by showing tha t  there exist s ta tements ,  the Tverberg-Vre~ica conjecture being 
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the main example, which are naturally rephrased and often solved in this broader 

context. 

The Tverberg or Tverberg-Vredica problem is one of the central conjectures in 

combinatorial geometry. It is a natural "supremum" of a large class of Tverberg 

type statements and results about combinatorial partitions of masses in R d. At 

the origin of this conjecture, although it may not be obvious at the first sight, 

are Helly's convexity theorem and its relative Radon's theorem (Figure 1). 

CONJECTURE 1.1 (Tverberg-Vre~ica conjecture, [26]): Assume that 0 < k < 

d -  1 and let So, S 1 ,  . . . , S k  be a collection of finite sets in R d of given cardinalities, 

[Si] = (ri - 1) (d -  k + 1) + 1,i = O, 1 , . . . ,k .  Then Si can be partitioned into 

ri nonempty sets, $1 , . . . ,  5~ ~, so that for some k-dimensional af/ine subspace 
P c R  d 

P N c o n v ( S J ) # 0  foreachpair ( i , j ) ,  0 < i < k ,  O<_j<_ri. 

The main result of this paper is a partial positive answer to this conjecture. 

THEOREM 1.2: The Tverberg-Vredica conjecture is true under the condition 

that both d and k are odd integers and ri -- q for all i = 0 , . . . ,  k, where q is an 

odd prime number. 

The proof of this theorem is postponed for section 4. There we formulate a more 

general, nonlinear version of Conjecture 1.1 and establish the corresponding more 

general version of Theorem 1.2. 

Helge Tverberg formulated Conjecture 1.1 at the 1989 Symposium on 

Combinatorics and Geometry in Stockholm. It appeared in print in [26] where 

Tverberg and Vre6ica established a slightly weakened version of the conjecture in 

the case k = d - 2. Tverberg was apparently motivated by the observation that 

both the well known Tverberg theorem and the "central transversal theorem", 

Theorems 1.3 and 1.4 below, are consequences of Conjecture 1.1. Figure 1 shows 

the relationship among these results and the other well known combinatorial 

geometric statements. 

THEOREM 1.3 (H. Wverberg, [25]): Every set g = {aj}~qo 1)(d+l) C R d, con- 

s is t ing  of (q - 1)(d + 1) + 1 elements, can be partitioned into q nonempty, dis- 

joint pieces K 1 , . . . ,  Kq, so that the corresponding convex hulls have a nonempty 

intersection 
q 

N conv(Ki) # O. 
i=1 
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Figure 1. 

THEOREM 1.4 (Center transversal theorem, [30]): Let #0,#l,---, t tk,  0 < k < 

d - 1, be a collection of a-additive probability measures defined on the a-algebra 

of all Bore1 sets in R d. Then there exists a k-dimensional anne subspace P C R '~ 

such that for every closed halfspace H(v, a) := {x e R "~ ] (x, v) <_ a} and every 

{1,2,...,k}, 

P c H(v, a) ~ #i(H(v, a)) > 1/(n - k + 1). 

Conjecture 1.1 reduces to Theorem 1.3 for k -= 0. Tverberg's theorem 

(Theorem 1.3) reduces in case q = 2 to Radon's theorem, which was the basis for 

the first proof of Helly's convexity theorem. The continuous Tverberg theorem 

(Theorem 1.6) is a consequence of the nonlinear version of the Tverberg-Vredica 

conjecture which is formulated in section 4. The center transversal theorem fol- 

lows from Conjecture 1.1 by an approximation argument. This can be done for 

the class of weak limits of measures concentrated on finite sets. The majority of 
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geometrically interesting measures including the measures absolutely continuous 

with respect to the Lebesgue measure and the counting measures are obtained 

this way. Recall that the counting measure us, associated to a finite set S c R d, 

is defined by us (A)  := IA N S I l l S  I. 

PROPOSITION 1.5: The  central transversal theorem (Theorem 1.4) is a 

consequence of  the Tverberg-Vredica conjecture. 

Proof." Suppose that #,, i = 0 , . . . ,  k is a collection of probability measures such 

that for each i there exists a sequence q~ of natural numbers, qi ~ ~ ,  and a 

sequence S~ C R a of finite sets, ISLI = q~,, so  t h a t  u, is a weak limit of counting 

u i u~(A) :--IA ' ' probability measures u n := s . ,  r S~l /q  n for each Borel measurable 

set A. This means that 

n - - k  O 0  d d 

for every bounded continuous function f ,  which implies that l imsupv~(F) _< 

# , (F)  for each closed set, say for each closed halfspace. Without loss of generality 

it can be assumed that the cardinality of the set S~ is qi = (r / - 1 ) (d -  k +  1) + 1 
i for some r,~ ~ N. By the Tverberg-Vredica conjecture, applied on the family 

IS~ lk there exists an affine k-dimensional subspace Pn C R d and a S n  ~ t n J i = 0 ,  
i 

partition S~ = I.J~"_-~ S~,(j) such that P,, n conv(S~,(j)) r O for a l l /  and j .  

From here we deduce that each closed (and open) halfspace H + containing Pn 

intersects each of the sets S / ( j ) ,  hence 

1 
u ~ ( n + )  > r,~ - -  for n ~ cx). 

- q--~ --+ d -  k + l 

The sequence Pn is obviously bounded in the Grassmannian of all affine k- 

dimensional subspaces of R d so it can be assumed that it converges to a k-plane 

P. From here and the inequalities above, it is easily deduced that #~(H +) > 

1/(d  - k + 1) for each halfspace H + D P and each i = 0 , . . . ,  k. II 

The center transversal theorem reduces in case k = 0 to Rado's theorem 

"on general measure", [19], which is today better known as the center point 

theorem, [28]. R. Rado deduced his theorem from Helly's convexity theorem but 

the converse is also true. Namely, a minimal counterexample to Helly's theorem 

produces a counting measure which contradicts Rado's theorem. In case k = d -  1 

the center transversal theorem reduces to the "ham sandwich theorem". There 

are many other intriguing and surprising connections, [8], [18], [28]. Some of 

these results and connections are recent and some were established more than 
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seventy years ago. It is interesting that a single conjecture can provide a unifying 

theme for different results, separated by several decades, and this may serve as 

evidence of the fundamental role of the Tverberg-Vredica conjecture. 

Proofs of statements above are often based on topological ideas, e.g. the center 

transversal theorem follows from the fact that 0 ~ w~ -k E Hk(n-k)(Gk( Rn); Z2) 

where wk is the top Stiefel-Whitney class of the canonical bundle over the Grass- 

mann manifold Gk(Rn). A topological nature of these statements is exemplified 

by the following "topological Tverberg theorem" which reduces to the Tverberg 

theorem above if f is an affine map. Note, however, that topological methods 

used here require an additional assumption that q is a prime. 

THEOREM 1.6 ([4]): Let q be a prime integer and A (q-1)(a+l) a (q - 1)(d+ 1)- 

dimensional simplex. Then for every continuous map f: A(q-1)(d+l) --+ R d there 

exist disjoint faces A t~ , . .  . , i tq C A (q-1)(d+l) such that Ni=lq f ( A  t') r O. 

The proof of Theorem 1.2 will be given in section 4 where it is deduced as a 

corollary of a general combinatorial statement about continuous cross-sections of 

vector bundles. The proof involves the whole range of techniques that we now 

have available in the Combinatorial Geometry of Vector Bundles. They include 

applications of parametrized, ideal valued index theorems of Dold [7], Fadell and 

Husseini [9]-[11], Izydorek and Rybicki [13], Jaworowski [14] and Nakaoka [17] 

and the combinatorics of deleted joins which was introduced by Sarkaria and 

which evolved in papers of Sarkaria, Vredica, Zivaljevi~ and others. 

It is plausible that a refinement of methods used in the proof of Theorem 1.2 

should establish the Tverberg-Vre~ica conjecture in the case where the integers 

ri are not necessarily equal. Also, we are convinced that the assumption that d 

and k are odd integers is not essential. 

2. A r e v i e w  o f  geometric combinatorics in R d 

Figure 1 is primarily intended to illustrate the central position of the Tverberg-  

VreSica conjecture ifi a family of well known combinatorial geometric statements 

in R d. In the background, this diagram should suggest that there exists a broader 

perspective on this' field. The new ambient space for these results is a bundle E 

of vector spaces, rather than a single space, or alternatively the space F(E) of 

all continuous cross-sections of E instead of R d. The geometric combinatorics 

of these objects is in this paper referred to as the combinatorial geometry on 

vector bundles. In this section we give a review of some well known "classical" 

R a statements as motivating examples for more general "bundle" results. 
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The well known Kuratowski nonplanarity criterion implies that g3, 3 is not 

embeddable in R 2, which implies that for any collection of 3 red and 3 blue 

points in the plane, there exist two intersecting vertex disjoint line segments 

with end points of different color. From a collection of 3 blue, 3 white and 3 red 

points in the plane R 2, one can always select three vertex-disjoint, "rainbow" 

triangles which have a nonempty intersection. A "rainbow" triangle is a triangle 

having all vertices of different color. Something similar is possible in the 3-space 

R 3. This time we need at least 5 points of each color in order to guarantee 

existence of three vertex disjoint, "rainbow" triangles, which have a nonempty 

intersection. 

These three statements, or their nonlinear analogues, can be abbreviated as 

follows: 

(1) (K3,3 --+ R 2) =~ (2 ~ point), 

(2) (K3,3,3 2+ R 2) ~ (3 ~ point), 

(3) (K5,5,5 -+ R 3) ==~ (3 ~ point). 

For example, the last statement says that  for every continuous map f:  K5,5,5 --+ 

R 3, where K5,5,5 := [5]* [5]* [5] is the 2-complex obtained as the join of three copies 

of [5] -- {1, 2, 3, 4, 5}, there exist three points in three vertex-disjoint triangles 

which are mapped to the same point in R 3. The statement (2) is similar, except 

that  f :  K3,3,3 -+/~2 is assumed to be a simplicial map and it is not known if it 

holds in the general case. Recall that the first statement is historically one of 

the earliest topological results known already to Euler, who formulated it as a 

problem about three houses and three wells. 

In all examples listed above the target space is two or three dimensional space. 

Actually, these results are special cases of quite general statements about config- 

urations of "colored" points in R d, see [28], [29], [31]. A different generalization 

to the 3-space is provided by the theory of linkless, windless etc. embeddings of 

graphs, [24]. An example from this circle of results is the statement 

(4) (K6 ~ R 3) ~ linking 

which says that  for every embedding of the graph K6 in R 3 there exist two disjoint 

circuits C1, C2 of K6 which are linked with a nonzero winding number, [6], [21]. 

We show in sections 3 and 4 that the results (1)-(3) above can be extended in 

a systematic way to include higher dimensional statements where the existence of 

a common point (common 0-dimensional transversal) is replaced by the existence 

of a common k-dimensional transversal. Recall that a k-dimensional transversal 
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of a family 9 v = {Fj}?.=I of subsets in R d is an affine k-dimensional space L C R d 

such that  L n Fj ~ 0 for all j .  For example, a simple consequence of the "ham 

sandwich theorem" is the following statement: 

(K4,4 ~ R 2) :a (4 -+ line) 

which implies that  for any collection of 4 black and 4 white points in the plane R 2 

there exists a line intersecting four vertex disjoint line segments with end points 

of different color. Much less trivial is the statement 

(5) (/(6,6 ~ R 3) ~ (4 ~ line) 

which, in the affine case, says that for every collection of 6 red and 6 blue points in 

R 3 there exist 4 line segments with end points of different color having a common 

line transversal. This result can be viewed as a relative of the nonplanarity of 

K3,3. Of course, there are higher dimensional complexes which exhibit similar 

behavior as shown by the following example: 

(a 7 -~ R 3) ~ (4 ~-~ line) 

where a27 is the 2-skeleton of a 7-dimensional simplex a 7. These results will be 

deduced in the following sections as corollaries of general statements belonging 

to the combinatorial geometry on vector bundles. This is not a surprise since 

the collection of all affine k-dimensional subspaces of R d is naturally interpreted 

as the total space of the tautological (d - k)-dimensional vector bundle over the 

Grassmannian manifold Gd_k(R d) of all ( d -  k)-dimensional vector subspaces of 
/~d. 

We end this section with an open problem. It is known that aside from pla- 

nar graphs there exist other topologically defined classes of graphs which admit 

a combinatorial characterization in terms of "forbidden minors". According to 

Robertson, Seymour and Thomas, graphs which admit linkless (windless) embed- 

dings can be characterized as graphs which have no minors in the the Petersen 

family, [24]. 

PROBLEM 2.1: Find a combinatorial characterization in terms of forbidden 

minors of all graphs K for which the statement (5) is not true, i.e. characterize 

all graphs which can be mapped to the 3-space such that no 4 vertex-disjoint 

edges admit a line transversal. 
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3. C ombi na t o r i c s  of sect ions of  2-plane bundles  

In this section we prove first a theorem (Theorem 3.1) which is so designed to 

imply the simplicial version (K6,6 _5, R3) ~ (4 ~ line) of the statement (5) 

from the previous section. It also serves as a good illustration of the technique 

and the main ideas applied in the rest of this paper. After that we formulate a 

nonlinear "twin" version of Theorem 3.1 and show that its proof doesn't require 

new ideas. The proof of Theorem 3.1 is carried on step by step, which should 

hopefully make its ideas more transparent and accessible to nonspecialists in 

either Combinatorics or Topology. 

THEOREM 3.1 : Let R 2 -+ E ~ M be a 2-dimensional, real vector bundle over a 

2-manifold M with a nonzero second Stiefel-Whitney class w2(E) C H2(M; Z2). 
Let ..4 6 = {a~ },=1 and/3 = {b~}6~=1 be two collections of continuous cross-sections 

of E. Then for some p E M there exists a configuration of four intersecting line 

segments [a~, (p), b~,(p)],i = 1 , . . . ,  4 formed by these cross-sections. In other 

words, there is a partial matching { (a~, 4 /3i)}~=1 C [6] • [6] in the bipartite graph 

K6,6 so that 
4 

["] [a~, (p), b~, (p)] r ~. 
i=I  

The plan of the proof of Theorem 3.1 follows. 

(i) One observes first that (K3,3 -~ R 2) :* (2 ~ point) is a statement of 

Borsuk- Ulam type. Recall ([5]) that the Borsuk-Ulam theorem says that 

for each continuous map f: S ~ ~ R d there exists a pair of (antipodal) 

points {x , -x}  such that f ( x )  = f ( - x ) .  The statement (1) is very similar 

in spirit with the only difference that instead of a pair of antipodal pointsl 

it claims the existence of two points x and y, belonging to vcrtex disjoint 

edges of K3,3, such that f ( x )  = f(y) .  

(ii) The second observation is that the Borsuk-Ulam theorem admits a general- 

ization to vector bundles, see [14], [17], [l 0], [7], [13], and section 5, which is 

referred to as the parametrized Borsuk- Ulam theorem. We conclude that, 

in light of (i), the statement (1) also admits a parametrized version. 
3 , 3 ,, A '  g "  g \ Y' .  (iii) Let A' := {aa},~=~,B := {b~3}/~=l,.A :-- .A \  and := Let 

{fb}beM, fb: K3,3 --4 Eb, be the family of simplicial maps determined by 

sections .,4' U 13'. Define the set C' of crossing points  for A' u /3 '  (see 

Definition 3.3 for a more precise description) by 

C'  := {x E E ] x is a double point for fb: K3,3 ~ Eb for some b E M}. 
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An application of the parametrized version of (1), coupled with the index 

theorem (section 5), allows us to conclude that both C '  and C"  (the letter 

set is associated to sections A "  u /3" )  are (co)homologically "very big". 

(iv) Finally, we conclude, essentially by the argument of theorem 11.10 from 

!5!, that  C: (q C"  # O, which completes the proof. 

Now we are ready to present a reasonably detailed proof of Theorem 3.1 

following the plan outlined above. 

Proo f  o f  Theorem 3.1: 

STEP (i): Let us sketch a cohomological proof of nonplanarity of K3,3, cf. [23] 

or [29]. Given f :  K3,3 --+ R 2 one defines a Z2-equivariant map ~: (K3,3)~ 12) -~ 

R 2 . R  2, dp(tx+(1 - t ) y )  := t f ( x ) + ( 1  - t ) f ( y )  from the deleted join of K3,3 = [3]*[3] 

to R 2 * R 2 C R 5. Recall ([29]) that the qth deleted join o f a  simplicial complex K 

is the complex K~ (q) C K * . . .  * K = K *(q), which consists of all simplices of the 

form a = al * " �9 �9 * aq where a,, i = 1 . . . . .  q are pairwise vertex-disjoint simplices 

in K. The nonplanarity of K3.a follows from 

(6) [m(r n A # 0 

where A --=- { l /2x  + 1/2x  C R 2.  R2lx E R 2 } is the diagonal in ll2 * R 2. Since; [29], 

(K3,3)~ (2) ~ S 3 and R 5 \ A _~ S 2 as Z2-spaces, the desired observation follows 

from the fact that  there does not exist a Z2-equivariant map from S 3 to S 2 (the 

Borsuk-Ulam theorem). 

STEP (ii): Suppose that  instead of a single map f :  Sct ~ R d, as in the usual 

Borsuk -U]am theorem, we have a continuous family of maps fb: S a - I  Fl d, b E B ,  

where B is a "parameter" space. In other words, we have a continuous map 

F: B x S a ~ B x R d where fb(x)  = F(b , x ) .  More generally, instead of usual 

Cartesian products we can use "twisted products" or fibre bundles S d ~ V -~ B 

and R d -~ W ~ B in which case F is a bundle map, i.e. a map for which the 
i 

following diagram is commutative: 

V F , W  

B ~ - . B  

The Borsuk-Ulam theorem guarantees that  for each b E B there exists a pair 

of points { x , - x }  C Vb := v - l ( b )  such that  F ( x )  = F ( - x ) .  The parametrized 

Borsuk-Ulam theorem, [14l, [17], [10], [7], [13], says that  we know a great deal 
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more about the set C :-- {x E V I F(x)  = F ( - x ) }  c V than just C A Vb # • for 

each b E B. Namely, it has been proved that the map ~: C/Z2 ~ B induces a 

monomorphism 

(7) H*(B, Z2) 

of Cech cohomology groups, where C/Z2 is the orbit space with respect to the 

obvious action of Z2. 

Remark 3.2: The reader who prefers to work with singular cohomology groups 

should replace C/Z2, in the statement above, by an arbitrary (small) open neigh- 

borhood O(C/Z2) of C/Z2. This change wouldn't affect any of the subsequent 

proofs. Our choice of the Cech cohomology keeps the notation simpler and of- 

ten, like in the case of index theorems (section 5), leads to aesthetically more 

satisfying formulas. 

Something similar to (7) ought to be true for other Borsuk-Ulam type results 

so, in light of (i), the statement (1) should also have its parametrized version. 

This is established in our next step. 

STEP (iii): Cross-sections A'U/~' (see (iii) above) define, by simplicial extension, 

a map F: M • K3,3 --+ E of two M-fiber bundles. As in the proof of nonplanarity 

of K3,3 (cf. (i)) it is natural to pass to the Z2-equivariant map (I) of bundles over 

M 
M •  3 ~ , W 

M ~- ~ M  

where S 3 ~ (K3,3)~ (2) and W is the bundle with the fibre Wp = E v * Ep. The 

last bundle is realized as a subbundle of the Whitney sum Z := E G 01 | E, 

where 01 is a 1-dimensional trivial bundle over M in the same way R 2 * R 2 can 

be realized inside R 5, [29]. The original bundle E is naturally isomorphic with 

the diagonal subbundle A ~ M of W where Ap -- {1/2x + 1/2x E Wpix c Ep}, 

and we assume until the end of this proof that bundles E and A are identified. 

Definition 3.3 (crossing points): It follows from nonplanarity of K3,3 that  for 

every p C M there exists a partial matching {(ai 2 ,~i)}i=1 in the graph K3,3 so 

that  [a, 1 (p), b~l (p)] M [a~ 2 (p), b~2 (p)] r 0. A point in this intersection will be 
called a crossing point, or briefly a C-point. Let C' := {x C E I x is a C-point 

in Ep for some p E M} be the set of all crossing points for sections ,4 ~ U B ~ and, 

similarly, let C" be the set of all crossing points for sections .4" U B' .  In light of 
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the identification of bundles E and A, we observe that 

C' = Im(@) r7 A. 

Note that  the number of C-points can vary from fiber to fiber, so the restriction 

7r0: C' --~ M of ~r: E --+ M is far from being a covering map. It was already 

observed that lr0 is onto. We want to show that C ~ is a "cohomologically big" 

space in the sense that ~rS: H*(M; Z2) --+ H*(C';  Z2) is a monomorphism (cf. 

Remark 3.2). This is deduced as follows. 

A very useful invariant of a G-space X is the G-index Inda(X);  see section 5. 

If X is a family of G-spaces parametrized by a parameter space M, then the 

index Inda(X)  is an ideal in the ring H*(M;R)| H*(BG;R), provided the 

conditions of the Kiinneth theorem are satisfied. Let G = Z2 = R. By applying 

the parametrized version of the index theorem to the map ~5 above, see section 

5 or the references [7], [10], [13], we have 

(8) I n d c ( ~ - l ( A ) )  Indc (W x A) C In d c (M x $3). 

The ring H*(M) | H*(BZ2) "~ H*(M)[f~],deg(f~) = 1, is a polynomial ring 

with coefficients in H*(M). The relation (8) has in this case a very simple mean- 

ing. The index Indc(S(V))  of the sphere bundle associated to a vector bundle 

V, cf. Proposition 5.4, is the principal ideal in the ring H*(M)[~] generated by 

a polynomial of the form f~k + Wlf~k-1 + ... + Wk, where w~ are the Stiefel- 

Whitney classes of V and k = dim(V). As a consequence we obtain that  the 

ideal I n d c ( M  x S 3) is generated by the polynomial ft 4, the index In d c (W  \ A) 

is generated by a polynomial of the form gt 3 + 3`lfl 2 + 3`2ft + 3'3 and the relation 

(8) says that 

(9) 0(f~ 3 + 3`1f~ 2 + 3`2f~ + "Y3) is divisible by ~4 

for each 0 E Indc(O-1(A)) .  This implies that there does not exist a constant 

polynomial 0 in the index Indc(q)-1 (A)), where constant means a polynomial of 

Q-degree 0. From here we deduce that H*(M) --+ H*(O-I(A)/Z2) is a mono- 

morphism. Finally, from the commutative diagram 

�9 . c '  

M , M  

it follows that  ~r 8 is also a monomorphism. 
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STEP (iv): By the universal coefficients theorem 

Hom(H2(M; Z2), Z2) . Hom(H2(C'; Z2), Z2) 

is I-l ,  so (no),: H2(C'; Z2) ~ H2(M; Z2) is an epimorphism. Hence, the Z2- 

fundamental class e 6 H2(M; Z2) ~ H~(E; Z2) is supported by C'. If D(E)  and 

S(E)  are the associated disk and sphere bundles, we conclude that the Thorn 

class v 6 H2(D(E) ,  S(E); Z2), seen as the dual of e in the manifold with bound- 

ary (D(E),  S(E))  ([5]), is supported by an arbitrary small neighborhood of C'. 

Everything that has been proved for C' also holds for the set C" of crossing points 

associated to A " U  B". Since r 2 = W2T C H*(D(E) ,S (E) ;  Z2) is nonzero and r 

is supported by arbitrary small neighborhoods of both C ~ and C", we conclude, 

[5! Theorem 11.10, that C' n C" ~ 0 and the theorem follows. 1 

Here we formulate a stronger, nonlinear version of Theorem 3.1 which 

nevertheless doesn't need new ideas for its proof. 

THEOREM 3.4: Let R 2 ~ E _5, M be a 2-dimensional, real vector bundle over a 

2-manifold M with a nonzero second St ie fel-Whitney class w2(E) E H2(M; Z2). 

Let Cp:/(6,6 --+ E be a family of maps continuously depending on the parameter 

p E M such that Image(r C E v := 7r- 1 (p). Then there exists p E M and four 

vertex-disjoint edges e l , . . . ,  e4 of the graph K6,~ such that 

4 

Proof: The proof is completely analogous to the proof of Theorem 3.1 with the 

only difference that in the step (iii), the bundle map (I): M x (Ka,a)~ (2) ~ W is 

defined directly with the aid of functions Cp by r tx  + (1 - t)y) = tCp(x) + 

( 1  - t)Cp(y). 1 

COROLLARY 3.5: For every continuous map f:  K6, 6 --~ R 3 there exist four vertex- 

disjoint edges e l , . . . ,  e4 in the graph/(6,6 such that the sets f ( e l ) ,  . . . , f(e4) have 

a common line-transversal in R 3 or, in the notation of  section 2, 

(K6,6 ~ R 3) :=> (4 ~ line). 

Proof: The space of all lines in R 3 is identified as the tautological 2-plane bundle 

E over the projective space R P  2. More explicitly, a line l C R 3 is represented 

by the vector v := l n p in the fibre p, where p := l • is the plane orthogonal 

to l which passes through the origin. The result follows from Theorem 3.4 if we 

define Cp := 7rp o f ,  where 7rp: R 3 ~ p is the orthogonal projection. 1 
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4.  T - V  c o n j e c t u r e  a n d  i t s  r e l a t i v e s  

Here we present  proofs of the main results of this paper  including a part ial  solu- 

tion of tile Tve rbe rg  - Vre~ica conjecture. We use the parametr ized,  cohomological  

index theory as one of our main tools; see the references or section 5. We suppose  

tha t  our cohornology theory is a continuous extension of the singular  cohomology 

theory, say Alexander  Spanicr or (~ech theory. In part icular ,  we assume tha t  the 

cohomology of each closed subspace T in a compact  manifold (with boundary)  is 

a direct limit of s ingular  cohomology groups taken over all open neighborhoods  

of T, 

H * ( T )  "~ c o l i m ( H ~ ( U )  [ U is an open neighborhood of T}. 

This  means  tha t  the reader who prefers to work with the singular theory should 

not have difficulties (see Remark  3.2) to make necessary modifications. 

Delinit ion 4.1: Let R d -4 E -'~ B be a d-dimensional,  real vector bundle over 

a compac t  space and ~ = ( '~'},EI, [ = {0, 1 . . . . .  (q - 1)(d + 1)}, a collection of 

continuous (:ross-sections where q is an odd prime number.  Then x E E is called 

a Tverherg  q-point  or s imply a tq-point if there exists b E B and a part i t ion 

l = 11 LJ . . .  U Iq of I into q nonempty,  pairwise disjoint sets so tha t  

x C- N ( c o n v ( ~ k ( b ) } k e b  I J = 1 . . . .  ,q} C Eb := 7r- ' (b) .  

THEOREM .1.2: Let R d ~ E .5, B he a d-dimensional,  real vector bundle over 

a compact  space B and 6 -- ( ? ' } , e , , l  = (0, 1 . . . . .  (q - 1)(d + 1)}, a collection 

o f  cont inuous  cros.~-sections where q is an odd pr ime number.  Let  T C E be the 

collection o f  tq-points. Under these condit ions the restriction m a p  7r0: 7' ~ B 

i nd , ce s  a 1-1 m a p  

(10) 7r~): H ~  Zq) . H ' ( T ,  Zq). 

Proof: Let AA be a A-dimensional simplex, A = ( q -  1)(d + 1). L e t  K be 

the configurat ion space of all q-tuples of points x l ,  �9 �9 xq E A A such tha t  for all 

i r j ,  x, and x2 belong to disjoint faces of A A. K is easily seen to be a regular cell 

subcomplex  of (AA) q with the maximal  cells of the form ez -- At~ x . . .  x A lq, 

where 2" = {Iz . . . . .  Iq} is a par t i t ion of I and A t, the corresponding faces of 

A A. Not(; tha t  K is a free Zq-space with the action inherited from the obvious 

Zq-action on (AA) q. This  complex was introduced in (4] where it was used in a 

proof  of the topological Tverberg  theorem (Theorem 1.6). A key proper ty  of this 

space is tha t  it is a [(q - l ) d -  l]-connected, [ ( q -  1)all-dimensional CW-complex .  
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For each b �9 B there is a simplicial map Ab: AA "-4 Eb, continuously depending 

on b �9 B, which sends vertices of A A to vectors 7i(b), i = 0 , . . .  ,A. Let Fb: K -4 
Eeb q be the induced map into the direct sum of q-copies of Eb. These maps also 

continuously depend on b and, taken together, define a map 

B x K F, E(gq. 

F is viewed as a Zq-equivariant map of two Zq-spaces parametrized by B. Let 

A be the diagonal subbundle of E eq. By the parametrized index theorem (see 

the end of section 5) applied on the Zq-equivariant map F with the subspace A 

in the role of V, we have 

(11) I nd (F - l (A) )  Ind(E eq \ A) C Ind(B x K).  

The bundle E @q \ A has the homotopy type of a free [(q-1)d-1]-dimensional Zq- 
sphere bundle over B. By a Zq-extension of Proposition 5.4, see [13], 

Ind(E ~ \ A) is an ideal in the ring R = H*(B, Zq) @ Zq[x,y] where deg(x) = 

1, deg(y) = 2. More precisely, Ind(E Cq \ A) generated by a polynomial of the 

form 
(12) Q = yn + alxyn-1 + ~lyn-1 + . . .  + anx + fin 

where n = (q - 1)d/2 and ai,~i �9 g*(B, Zq),i = 1 , . . . , n  are the so-called 

Grothendieck-Chern classes of the bundle E $q \ A --~ B, see [7], [13]. Since 

K is [ ( q -  1 ) d -  1]-connected we conclude that  the map /*: H*(BZq, Zq) --4 
H*(K/Zq,Zq), induced by the classifying map l: K/Zq --4 BZq, is 1-1 up to 

dimension (q - 1)d. From here and the universal coefficients theorem it follows 

that  the composite map 

L: H*(B) | Zq[x,y] , H*(B) N H*(K/Zq) 1-1 H*(B x K/Zq) 

has the property that L*(Q) # 0 for any nonzero polynomial Q of degree at 

most (q - 1)d. In other words, the ideal Ind(B x K) does not contain a nonzero 

polynomial Q of degree deg(Q) <_ ( q -  1)d. This immediately implies that  for any 

0 # a �9 H*(B, Zq), o~ - -  O~| 1 ~ Ind (F - l (A) ) .  Otherwise, by the index theorem, 

the polynomial P = aQ would be a nonzero element in Ind(B x K) of degree at 

most (q - 1)d. Since the map p: F-I(A)/Zq --4 B can be factored as p = r0 o F,  

we conclude that  ~r~: H*(B, Zq) -+ H*(T, Zq) is also injective. | 

Remark 4.3: Under the same conditions, using the universal coefficients theorem 

for cohomology, we deduce that the map 7r~: H*(B, Z) | Zq -4 H*(T, Z) | Zq is 

also injective. 
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Remark 4.4: If we work with singular cohomology theory, an analogue of 

Theorem 4.2 claims that 

*. H*(B, Zq) , H*(V, Zq) (13) %. 

is a monomorphism for arbitrary small open neighborhood V of the space T of 

Tverberg q-points. 

Remark 4.5: Theorem 4.2 was modeled by the usual Tverberg theorem. It is 

clear that the method can be used quite generally for other results of this type. 

For example, colored Tverberg theorems ([31], [27]), specially the form given in 

[27], is suitable for such an extension. The requirement in Theorem 4.2 that q 

is a prime is essential for the methods used here, but one can easily modify the 

proof above to include the case q = 2. 

COROLLARY 4.6: Under the assumptions of Theorem 4.2 it follows that the 
map 

(~r0).: H.(V, Zq) , H.(B, Zq) 

of singular homology groups, induced by the projection 7r0: V --+ B, is an epi- 
morphism for each open neighborhood V of T. Specially if B is a Zq-orientable, 
n-dimensional manifold and [B] E H~(B, Zq) is the corresponding &ndamental 
class, then [B] e H~(V, Zq). In other words, [B], seen as a e/ass in H,~(E, Zq) 
Hn(B, Zq), is represented by a cycle in V. 

Suppose that i: T -~ E is the inclusion map. Then there is a commutative 

H*(T, Zq) , i* H*(E, Zq) 

(14) 

H*(B, Zq) �9 ~- H*(B, Zq) 

i* 
From this diagram, since ~r* is an isomorphism, it follows that H*(E, Zq) --+ 
H*(T, Zq) is a monomorphism. From the inclusions T C V C E, where V is an 

arbitrary open neighborhood of T, we observe that H*(E, Zq) ~ H*(V, Zq) is 

also a monomorphism where (Remark 4.4) we can assume that these are the sin- 

gular cohomology groups. By the Universal coefficients theorem for singular co- 

homology with coefficients in Zq, where q is assumed to be a prime, H*(X, Zq) TM 

nom(H, (X,  Zq), Zq). We conclude that the map H.(V, Zq) ~ H.(E ,  Zq) of sin- 

gular homology groups, induced by the inclusion V C E, is an epimorphism and 

the corollary follows. | 

Proof: 
square 
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CONJECTURE 4.7 (Grassmannian Tverberg-Vredica conjecture): Let 

k 

G= {F~Z [ O < a < k , O <  D<_ ( r ~ -  l ) ( d - k  + l ) +  l} = ~_J G~ 

be a collection of continuous cross-sections of the canonical (d - k)-dimensional 

bundle over the Grassmann manifold Gd_k(R d) of all (d - k)-subspaces of R d. 

We assume that r(~ >_ 2, a = 0 , . . . ,  k are arbitrary integers. Then there exists 

p E Gd-k(R d) and a partition I~ U. . .  U I~ ~ of{O, 1 . . . . .  (ro - 1 ) ( d -  k + 1)} for 

each a = 0 , . . . ,  k, so that 

k rc~ 

N N 
~=Oj=l  

It is not difficult to see that  the original Tverberg--Vredica conjecture follows 

from Conjecture 4.7. Our Theorem 1.2 is a consequence of the following result. 

THEOREM 4.8: Conjecture 4.7 is true under the condition that hoth d and k 

are odd integers and that natural numbers r~, c~ = 0 , . . . ,  k are all equal to an 

odd prime number r. 

The following proposition will be needed in the proof of Theorem 4.8. 

PROPOSITION 4.9: Let E ~ G+k(R d) be the canonical (2k)-dimensional vector 

bundle over the Grassmann manifold G+k(R a) of all oriented (2k)-dimensional 

vector subspaces of R d. Assume that d >_ 3 is an odd integer. Then the Euler 

class e := e(E) E HUk(G+k(Ra ), Zr) has the property e a-2k # 0 for any coefficient 

ring Zr, where r is an odd integer. 

Proof: The proof uses the ideas of the proof of Theorem 3.16 in [10]. Denote 

by Va,2k the Stiefel manifold of all orthonormal (2k)-frames in R a and let T(j )  = 

SO(2) x . . .  x SO(2) be the product of j copies of S0(2). Let us collect first 

some useful information about the cohomology of G+(R a) with Z~-coefficients. 

From the fibration S a-2 --+ Va,2 ~ S a-1 one computes the cohomology of Va,2. 

From here, by using the fibration SO(2) -~ Va,2 -~ G+(Ra), one deduces that  

H* ( G+ ( Ra), Zr ) ~ Zr[x]/ ( xd-1), where x C H2 ( G+ ( Rd), Z~ ) is the Euler class of 

the canonical 2-bundle over G + (Rd). Note that  this description is a consequence 

of the fact that  2 E Z~ is invertible if r is an odd integer. The proof of the desired 

result e ~-2k r 0 is by induction. We start  with the fibration 

(15) Vd-2k+2,2 " V~,2k ~. Vd,2k-2 
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where 7r is the map which forgets the last two vectors in an orthonormal frame 

o E Vd,2k. We have a natural group action ofT(k)  on Vj,2k and the exact sequence 

SO(2) , T(k) . T ( k -  1) 

of groups shows how the torus T(k) acts on the fibration (15). Dividing by this 

action we get the fibration 

(16) ' .  

The space Vd,2k := Va,2k/T(k) is the base space of the principal T(k) bundle 

(17) T(k) "~ Va,2k �9 (/a,2k 

SO let I/amr ~ B(T(k)) be the classifying map. The cohomology of B(T(k)) is a 

graded polynomial algebra Z[zl, z2 , . . . ,  Zk], deg(zz) = 2, where z~ is the generator 

of the ith component in the decomposition B(T(k)) = BSO(2) x . . .  x BSO(2). 

Wc want to show that the class wn,k = (Zl z2 --- zk) a-2k is not in the kernel of the 

map p* This will be proved by induction on k. For k = 1, the observation is d,k" 

true because of the description of H* (G + (Rd); Z~) given above. For the inductive 

step, let us collect all needed fibrations in a commutative diagram 

(18) 

V2(Ra-2k+2) , G+(Rd-2k+2) v �9 BT(1) 

Va.2k ' l)d.2k v,.~ , B r (k )  

1 I 1 
Va,2k-2 �9 ~za,2k pd.,-, B T ( k - 1 )  

where p : =  Pd-2k+2,1. Since p*: H ' (BT(1) )  -4 H*(G+(Rd-2k+2)) is an epimor- 

phism we observe that the conditions of the Leray Hirsch theorem are satisfied 

for the fibration G+(R d-2k+2) ~ l)d,2k -4 l)d,2k-2. By the inductive hypothesis, 

the image of ( z l z2 . . .  zk-l)  a-2k+2 is nonzero in H*(tZd,2k_2, Z~). By tile Leray- 

zk 1)d-2k+2Z d-2k in H*(Vd,2k, Z~) is also Hirsch theorem, the image of (zlz2--- _ k 

nonzero, specially (ZlZ2. " Zk-lZk) d-2k is the nonzero element of the same group. 

The following diagram is commutative up to homotopy: 

l)d,2k p,,k , BT(k) 

d) �9 BSO(2k) 
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The map v: G+k(R ~) ~ BSO(2k) ~ G+k(R ~) classifies the canonical (2k)-bundle 
+ d over G2k(R ) and the Euler class e(E) C H~kIG+~ 2k~rRd~j, Zr) is the v*-image of 

the Euler class e of the universal bundle over BSO(2k). From here and the fact 

that  the p~,k-image of (zl -" zk) d-2k is nonzero, we finally deduce that  e d-2k r 0 

since 

s*(e d-2k) = s*v*(e) = p*d,k((ZlZ2.., zk) d-2k) r 0. 

Proof of Theorem 4.8: Now we are ready to give a proof of Theorem 4.8. We 

will actually prove a little more than promised by showing that a strengthened 

version of the conjecture is true. Namely, we show that the Grassmann mani- 

fold Ga_k(R d) of all (d - k)-subspaces in Theorem 4.8 can be replaced by the 

Grassmann manifold G+_k(R d) of all oriented (d-k)-subspaces  of R d. Clearly, a 

family of cross-sections of the canonical bundle over Gd-k (R d) leads to a family 

of cross-sections of the canonical (d k)-bundle over + d -- Gd_k(R ) and it suffices to 

establish the conjecture in this case. We start with the observation that  each of 

the collections G~ = {F~Z}~el, where I := {0 , . . . ,  (r - 1)(d - k + 1)}, satisfies 

the conditions of Theorem 4.2. Let Ts C E be the corresponding set of tr-points 

(Definition 4.1). Then by Theorem 4.2 (Remark 4.4) and Corollary 4.6, the fun- 
+ damental class [B] E Hk(a_k)(Gd_k(Rd),z~) is supported by each of the sets 

T~, a = 0 , . . . ,  k. Let D(E) and S(E) be the disc and sphere bundles associated 

to E so that  T~ C D(E) \ S(E) for all a. Then D(E), viewed as a manifold with 

boundary, is orientable since both the base manifold G+d_k(R d) and the bundle E 

are orientable. Hence the Thom class T C Hd-k(D(E), S(E); Z~), as a Poincar6- 

Lefschetz dual of the fundamental class [B] E Hk(d_k)(D(E), ZT), is supported 

by an arbitrary small neighborhood Us of the set T~, a = 0 , . . . ,  k. Precisely, this 

means that  7- is in the image of the map 

Hd-k(D(E), D(E) \ Us; Zr) , Hd-k(D(E), S(E); ZT). 

k If the theorem is not true, then Ns=0 Ts = 0 and there exist open sets Us D Ts 
k 

such that  ~s=0 Us = 0, i.e. U~=o(D(E) \ Us) = D(E). From here we deduce 

that  T k+l = 0, since this class must be in the image of the map 

H (k§ D(E);  Zr) * H (k+l)(d-k) (B(E), S(E); Z~). 

On the other hand, ~_k+l = Tek, where e = e(E) is the Euler class of the bundle 

E,  and by the Thom isomorphism theorem and Proposition 4.9 we conclude that  

T k+l ~ 0. This contradiction proves the theorem. | 

Theorem 4.8 has a nonlinear generalization which relates to Theorem 4.8 in 

the same way as Theorem 3.4 refers to Theorem 3.1. Also, many other Tverberg- 
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type results listed in Figure 1 have their linear and nonlinear extensions to vector 

bundles, cf. Remark 4.5. We hope to return to these and other related questions 

in a subsequent paper. 

5. A rev iew of  index  t h e o r y  

An index  func t ion  is a functor Ind: G-Top -+ C from a category of G-spaces 

and G-equivariant maps to a small category C. The object a x  = Ind(X) E 

C, associated to a space X E G-Top, is interpreted as a C-valued degree of 

complexity of X. The category C is usually a partially ordered set (P, _) viewed 

as a small category with Ob(C) = P and Mor(C) = {(p,q) E p2 I P - q}. In 

other words, this category has a unique morphism p --+ q for each pair p, q E P 

such that p ~ q. We say that a space X is of lower G-complexity than a space Y 

if a x  ~_ ay  and the Borsuk-Ulam paradigm can be formulated as the statement 

that only spaces of lower complexity can be equivariantly mapped to spaces of 

higher complexity, 

H o m G ( X , Y ) r  ~ a x  ~_ av .  

The simplest and historically first examples of index functions were defined for 

the category of spaces with continuous fixed point free involutions and with the 

poset N (or N U {+oc}) of natural numbers as the small category of complexities. 

An example is the Yang index function Ind Y defined for free (paracompact) Z2- 

spaces X as the smallest number n for which there exists a Z2-equivariant map 

from X to the sphere S ~. Yang formulated the following index  t h e o r e m .  

THEOREM 5.1: Let  X be a paracompact  space, T: X --+ X a continuous 

involution wi thout  fixed points  (a free Z2-action) and f:  X --+ R n a map  such 

that f ( T x )  = - f ( x )  (a Z2-equivariant map) .  Then 

IndV(f- l(0))  _> IndV(X) - n. 

Conner and Floyd defined a closely related index function IndCF(x)  := sup{n [ 

w~ ~ 0}, where w x  E g I (X/Z2;  Z2) is the first Stiefel-Whitney class of the line 

bundle X • z2 R1 -~ X /Z2 .  The Yang index function can be easily extended to 

the case of any finite group G; see, e.g., [29] for an elementary exposition. This 

index function is denoted by IndV(X), or simply by Indv(X) if the group G is 

self-evident from the context. Some combinatorial ideas of K. Sarkaria, [22], [23], 

see also [15], can be rephrased in the form of the following index theorem which 

was formulated in [29]. Recall that the order complex A(P) of a poser P is the 

simplicial complex consisting of all chains in P. 
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THEOREM 5.2: Let K be a finite, free G-simplicial complex and Ind~ an 

appropriate extension of the Yang index function to arbitrary finite groups. Let 

L be a G-invariant subcomplex. Let PK be the associated poser (K, C), PL the 

subposet associated to L and QL := PK \ PL the complementary poser. Let 

A(QL) be the order complex of QL. Then 

Ind , (L)  >_ I n d , ( K )  -IndY(A(QL)) - 1. 

Fadell and Husseini, [9], [10], [11], motivated partially by questions related to 

the extension of the Ljusternik-Schnirelmann method in critical point theory, 

were led to the ideal-valued cohomological index IndFH : G-Top ~ :Pa where 

(Pa, D) is the poset of all ideals in the ring H*(BG; R) ordered by the reversed 

inclusion. BG is as usual the classifying space of G and R a ring of coefficients. 

For a G-space X let Xa := EG x a X be the corresponding homotopic orbit 

space, where EG is a universal G-space. Then there exists a homotopically 

unique classifying map ~rx: XG -+ BG, hence a precisely and functorially defined 

homomorphism 7r~: H*(BG, R)-+ H*(Xa,R).  Let I n d ~ g ( x )  = Ker(~r~r be 

the corresponding ideal in the ring H*(BG, R). Then if f :  X --+ Y is a G- 

equivariant map, there exists a commutative diagram 

H*(VG, R) , H*(Xc, R) 

H* (BG, R) ~- . H* (BG, R) 

which implies that  Ind FH (X) D Ind FH (Y). An analogue of the Yang index 

theorem is the following result, [10], where the ideals are multiplied in the usual 

way: 

Let r X --+ Y be a G-equivariant map and V C Y a G-invariant THEOREM 5.3: 

subset. Then 

I n d ~ n ( ~ - l ( v ) )  Ind~H(Y \ V) C IndFH(x) .  

It is shown in I10] that an index theorem of the above form can be deduced 

in a quite general situation under the condition that the index functor Inda 

satisfies three basic properties or axioms. These axioms can be rephrased as 

the monotonicity, additivity and continuity of the index function. A typical 

category suitable for such an index function is a category of G-spaces over a 

fixed "parameter" space P. An object in this category is a G-equivariant map 

az:  X --+ P, where the action of G on P is assumed to be trivial, while morphisms 
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are the corresponding commutative diagrams. Since the homotopic orbit space 

X c  is now viewed as a bundle over both the parameter  space P and the classifying 

space BG, we are led to the following definition of the index: 

Ind(X)  = I n d , ( X ) : =  Ker{H*(P  x BG, R) . H*(Xc,R)} C H*(P x BG, R). 

The subscript G and the superscript P are often omitted if both the group G and 

the parameter  space P are clear from the context. It  is not difficult to show that  

this index function satisfies all axioms above for a suitable continuous extension 

of the singular cohomology theory. Hence an index theorem completely analogous 

to Theorem 5.3 also holds. If the cohomological structure of the parameter  space 

P permits us to use the Kiinneth formula, then 

H*(P x BG, R) ~ H*(P,R) | H*(BG, R) 

and in some cases this ring can be described as a graded H*(P,R)-algebra. 

Actually, thanks to the Kiinneth formula for cohomology which implies that  

the homomorphism 

H*(P) | H*(BG) , H*(P x BG) 

is always injective, we can compute indices in H* (P)| H* (BG) whenever conve- 

nient. Similarly, the Universal coefficients theorem for cohomology, saying that  

H*(P)| --+ H*(P,  R) is injective, allows us to work sometimes with H*(P)| 

see Remark 4.3. In this paper  we are specially interested in the case of the cyclic 

group Zq of prime order. This case is worked out in some detail in [7] and 

[13]. The reader can also trace back some of these ideas in the earlier papers by 

Jaworowski and Nakaoka. A somewhat different but related point of view is taken 

in the paper  [2], where the emphasis is on the algebraic variety associated to the 

ideal Indc .  

A useful index theory should be computable at least in the case of the most 

interesting G-spaces. The following proposition is an example of such a result. 

Many other computat ions can be found in the references. 

PROPOSITION 5.4: Suppose that R k -~ E -+ B is a real k-plane bundle and 

S(E) is the associated sphere bundle. Assume that the group G = Z2 acts on 

both E and S(E) by the usual linear action and let P(E) -- S(E)/Z2 be the 

associated projective bundle. Let 

Ind(S(E))  := Ker{H*(B) | H*(BZ2) ~ H*(P(E))}, 
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where the cohomology is computed with Z2-coefi~cients. Then the index 

Ind(S(E)) is a principal ideal in the ring H*(B) | H*(BZ2) generated by the 

polynomiM 
~k _}_ wx~k-I  _~ w2~k-2 jr... .  + Wk ' 

where wi are the Stiefel-Whitney characteristic classes of the bundle E and f~ is 

the generator of the ring H* (BZ2; Z2). 

Proof: A Grothendieck approach to the theory of (Stiefel-Whitney) character- 

istic classes is based on the observation that the cohomology H*(P(E) )  of the 

projectivized bundle P(E) ,  associated to a vector bundle R k -+ E -+ B, is a 

H*(B)-algebra generated by a single generator t, subject to a single relation of 

the form t k + wi t  k-1 + . . .  + wk, [12]. The proposition follows directly from this 

observation. | 
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